ELIZADE UNIVERSITY

ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATION 2020 / 2021 ACADEMIC SESSION

COURSE CODE: CSC 309

COURSE TITLE: Compiler Design

COURSE LEADER: Dr. Kehinde Agbele DURATION: 2Hours

Defaller

HOD's SIGNATURE

INSTRUCTION:

Candidates should answer Question ONE and any THREE Questions

Students are warned that possession of any unauthorized materials in an examination is a serious offence

1. (a) Give a regular expression for an identifier composed of letters, digits, and underscores that begins with a Letter (denote it by L), ends with a letter or digit (denote it by D), and contains no consecutive underscores (denoted by _). You may use [] for optional and + for 1 or more.

(b) Why is the diagram below Non-deterministic automaton (NFA)?

(b)Convert the transition table below to DFA

	а	b
{1, 3}	{1, 3}	{2}
{2}	{2, 3}	{3}
{2, 3}	{1, 2, 3}	{3}
{3}	{1, 3}	ф
{1, 2, 3}	{1, 2, 3}	{2, 3}
Φ	Φ	φ

- (c) Write a RE for the set of string that consists of alternating 0's and 1's over {0.1}.
- (d) What language does the regular expression (0|1)*0(0|1)(0|1) generate?
- (e) Construct a DFA over {0,1} accepting {1, 01}
- (f) Design a DFA accepting zero or more consecutive 1's. i.e $L(M) = \{1n/n = 0,1,2,...\}$
- (g) Explain the following components of a Finite Machine with aid of a diagram
- (i) Intermediate States (ii) State (iv) Start State (v) Final State (vi) Rejecting State
- (viii) Transition
- (h) Construct a DFA over {a,b} that accepts the strings ending with abb.
- 2. (a) What is an interpreter?
- (b) Construct a finite automaton that will accept a string of zeros and ones that contains an odd number of zeros and an even number of ones. Hence, list the regular expression in the transition diagram.
- (c) What are the various types of intermediate code representation?
- (d) Represent $\{ab, a, b, bb\}$ and $\{\lambda, ab\}$ sets by regular expression.
- (e) Explain the derivation principles and the options available.
- 3. (a) Explain the two parts of compilation process?
- (b) Define lexical analyser? Explain with the aid of diagram how it processes tokens.
- (c) Discuss about the principle sources of code optimization.
- (d) Differentiate between lexeme, token and pattern
- (e) Explain with examples the various operations on languages.
- (f) What is a finite automaton? List the mathematical model of a DFA.
- 4. (a) Define Compiler. What are the phases of the Compiler? Explain with a neat diagram.
- (b) What is the importance of code optimization in compiler design?
- (c) What are Compiler construction tools? Explain its specifications in detail.
- (d) What is the purpose of semantic analysis in a compiler?
- (e) Explain the derivation principles and the options available.
- (f) Determine all strings in L((a+b)*b(a+ab)*) of length less than five.
- 5. (a) Let M=({q1,q2,q3}, {0,1}, {q1}, {q3} is a NDFA where $\,\delta$ is given by

$$\delta(q_1, 0) = \{q_2, q_3\}$$
 $\delta(q_1, 1) = \{q_1\}$

$$\delta(q_2, 0) = \{q_1, q_2\}$$
 $\delta(q_2, 1) = \{\Phi\}$

$$\delta(q_3, 0) = \{q_2\}$$
 $\delta(q_3, 1) = \{q_1, q_2\}$

- (i) Construct an equivalent DFA and draw the transition diagram
- (ii) Check whether the string '011010' is accepted by DFA
- (b) Design a DFA accepting all strings that end in 01.
- (c Differentiate among regular expressions, regular grammar and regular language.
- (d) What is a parse tree? Illustrate with an example.
- (e) Explain the types of parsing with an example.
- (f) If $\Sigma = \{a, b, c\}$ then find the followings (i) Σ^1 (ii) Σ^2 (iii) Σ^3